

Solar Splash Senior Project I Presentation

December 2nd, 2020

$\bullet \bullet \bullet$

Advisors: Dr. Norman Asper Dr. Karen Yan Regina Cadillac Lauren DeSimone Daniel Johnson (DJ) Eliza Sweet Christopher Taylor

Volunteer: Nick Moriello

Solar Splash Competition

- Springfield, Ohio
- June 8th-12th, 2021

Competition Events

- Qualifying Eligibility
- Endurance Efficiency (2000 meters)
- Sprint Maximum Speed (300 meters)
- Slalom Maneuverability

Weight Distribution & Hull

 $\bullet \bullet \bullet$

Lauren DeSimone

Weight Distribution Objective

Displacement Hull

- Endurance Event
- Greater Range
- Requires less power from motor
- More comfortable

Planing Hull

- Sprint and Slalom Event
- Generates Lift
- Good maneuverability
- Higher Speed

Previous Weight Distribution

Sprint COG

Endurance COG

Center of Flotation

New Weight Distribution Schematics

Endurance Event Displacement Hull

Sprint/Slalom Event Planing Hull

New Weight Distribution

Sprint COG

Endurance COG

COG Calculations

	200	Sprint		
Part	Weight of Part (lb)	Distance from Bow (in)	Moment (lb*in)	
Electrical Panels	40	136	5440	
Batteries	80	109.5	8760	
Seat	3	81	243	
Driver	145	81	11745	
Steering	4	75	300	
Ballast	9.3	61	567.3	
Foam (Bow)	7.5	17.5	131.25	
Foam (Decking)	8.1	99	801.9	
Fire Extinguisher	3.25	73	237.25	
Toughbook	2	75	150	
Telemetry Battery	4	69	276	
Sprint Motor	60	161	9660	
Endurance Motor	41	101	4141	
Motor Mount	10	161	1610	
Block Mount	10	161	1610	
Driveshaft	4	161	644	
Propeller	9	161	1449	
Propeller Unit	4	161	644	
Stored Propeller	9	61	549	CoG (in)
	453.15		48958.7	108.041

	J	Endurance		
Part	Weight of Part (lb)	Distance from Bow (in)	Moment (lb*in)	
Electrical Panels	40	136	5440	
Batteries	80	107	8560	
Solar Panel 1	34	32	1088	
Solar Panel 2	34	70	2380	
Seat	3	81	243	
Driver	145	81	11745	
Steering	4	75	300	
Ballast	9.3	81	753.3	
Foam (Bow)	7.5	17.5	131.25	
Foam (Decking)	8.1	99	801.9	
Fire Extinguisher	3.25	73	237.25	
Toughbook	2	75	150	
Telemetry Battery	4	69	276	
Sprint Motor	60	45	2700	
Endurance Motor	41	161	6601	
Motor Mount	10	161	1610	
Block Mount	10	161	1610	
Driveshaft	4	161	644	
Propeller	9	161	1449	
Propeller Unit	4	161	644	
Endurance Extension	1	161	161	
Stored Propeller	9	61	549	CoG (in)
	522.15	1	48073.7	92.069

Flotation & Buoyancy

- Competition Constraint : 120% Flotation
- 3.02 ft³ of foam needed
- Currently 7.80 ft³ of foam
- 2.6 Safety Factor

Waterline in Solidworks

Part	Weight of Part (lb)
Electrical Panels	40
Batteries	80
Solar Panel 1	34
Solar Panel 2	34
Seat	3
Driver	145
Steering	4
Ballast	9.3
Foam (Bow)	7.5
Foam (Decking)	8.1
Fire Extinguisher	3.25
Toughbook	2
Telemetry Battery	4
Sprint Motor	60
Endurance Motor	41
Motor Mount	10
Block Mount	10
Driveshaft	4
Propeller	9
Propeller Unit	4
Endurance Extension	1
Stored Propeller	9
Hull	225
Misc.	20
Total	782.75

Future Steps

- Remove dashboard and pedal
- Construct foam mounts for motors

Steering

 $\bullet \bullet \bullet$

Lauren DeSimone

Steering Objective

New Design, Skipper 7" up

Steering Improvements

- Chain & Sprocket ----> Push Pull Cable
 - Increased Safety
 - Better Mechanical Advantage

Previous Chain & Sprocket Design

Push Pull Cable

Steering Design

Future Steps

- Construct steering post
- Reshape handlebar
- Install Steering Cables

Handlebar from Inventory

Wooden Steering Post

Telemetry System

 $\bullet \bullet \bullet$

Eliza Sweet

Goals & System Flowchart

- 1. Optimized Data Acquisition
- Optimized
 Synchronous
 Feedback
 - LabVIEW
- Implemented Asynchronous Feedback

• MATLAB

Telemetry Data Collection Flowchart

Preliminary Testing & Optimization

- Hardware/Software Compatibility & Optimization
 - GPS
 - IMU
- Hardware Constraints
 - Voltage Dividers

Optimal Voltage Divider Hardware to Eliminate Microcontroller Damage

Hardware	$V_{in}(V)$	V _{out} (V)	$R_{I}^{}(\boldsymbol{\Omega})$	$R_2(\boldsymbol{\Omega})$
Batteries	36	3.87	83k	10k
Telemetry Battery	12	4.00	10k	5k
Sprint Current	16	3.81	64k	20k
Endurance Current	16	3.95	61k	20k
Endurance Motor RPM	30	4.00	26k	4k

GPS Data		
Time		
05:44:03		
Date		station
October 21, 2020	return type	Station
Status	1 50	-129.996
A		0.04404
Fix Type	handle	9.81404
3	1	2,28508
Satellites in View		12.20000
Latitude (deg)		0
39.832567 N		0
Longitude (deg)		0
74.748050 W		0
Elevation (m)		0
184.0		U
Ground Speed (km/hr)		5,43501
0.47		
Ground Speed (knots)	IMU LabVIE	W Output
0.25		, carpat
Course over around (dea)		

343.22

GPS LabVIEW

Output

Synchronous Feedback Optimization

Endurance UI

Upcoming Manufacturing & Implementation

- 1. Rewire & relabel entire system
- 2. Implement all current and motor RPM sensors
- 3. Assemble IMU housing

4. Wire pump5. Program LabVIEW and MATLAB

		WINTER 2020-2021								SPRING 2021												S	SUMMER 20			21			
		% OF TASK DECEMBER JANUARY FEBRUARY MARCH					н		AP	RIL			MA	Y		JUNE		E.											
	TASK TITLE	Member	COMPLETE	1 :	2 3	3 4	1	2	3	4	1	2	3	4	1 :	2 3	4	1	2	3	4	1	2	3	4	1 :	2 3	; 4	4
4	Manufacturing																												
4.7	Telemetry Installation	E	1%																		6	2							
4.7.1	Rewire and Relabel	E&D	0%																										
4.7.2	Hall Effect Sensors	E	0%																										
4.7.3	Assemble IMU Housing	E	0%											10.															
4.7.4	Wire Pump	E	0%				83							_ 6			-												
4.7.5	Program LabVIEW	E	5%																										
4.7.6	Program MATLAB	E	0%																		1			-					
5	Integration and Testing																												
5.1	Telemetric Integration	E	0%																										
5.2	Skipper Practice	Т	0%																										
5.3	Endurance Practice	Т	0%																								Û		
5.4	Sprint Practice	Т	0%																										

Telemetry Manufacturing and Integration & Testing Gantt Chart for Spring 2021

Electrical System

 $\bullet \bullet \bullet$

Daniel Johnson (DJ)

Sprint Configuration

2020-2021 Sprint Configuration

Endurance Configuration

Speed Control and Bypass

2019-2020 Pedal

2020-2021 Steering wheel and Throttle

2019-2020 Potentiometer and Micro switch

Switch Control

2019-2020

Panel

▶ RPM Sprint Bypass Sprint Bypass Endurance Bypass Sprint Sprint End. End. Endurance Bypass RPM Bypass ON ON Bypass Battery → Battery 2020-2021 Switch Panel Schematic DMS DMS Tele. Speed Pump Sprint End Relay #2 Telemetry Battery 4 Motor Controller ➤ Telemetry ▶Relay #1 Pump

2020-2021 Switch Board wiring

Overall Layout

- Improve wire organization
 - Wire hooks and clamps
 - Label
- Polycarbonate cover
- Motor controller board supports

2019-2020 Electrical Board

2020-2021 Electrical Board Layout

Future steps

- Re-Build Electrical Board
- Single Pull Throttle Implementation
- On-Board Control Completion
- Wire Organization
- Polycarbonate Cover
- Wooden Board Supports

Motor Mounts

 $\bullet \bullet \bullet$

Christopher Taylor

Motor Mounting

- 1. Updated Blocks
- 2. Improved Mounting Plates
- 3. Wedge Tilt System

2019-2020 Mounting Configuration Side View (Right)

2019-2020 Mounting Configuration Top View (Left)

Motor Mounting

2020-2021 Mounting Configuration (Left)

2020-2021 Wedge Configuration (Right)

Motor Mounting

2020-2021 Mounting Blocks

2020-2021 Tilting Wedge

Power Transfer Unit

 $\bullet \bullet \bullet$

Christopher Taylor

Power Transfer Unit

Outboard Motor Components

2019-2020 Sprint Configuration

2019-2020 Endurance Extension

Power Transfer Unit

2020-2021 Endurance Housing

2020-2021 Sprint Housing

ANSYS Analysis

Spring Analysis (Left) Element Size: 0.965 square inches Element Type: Quad/Tri

<u>Spring Analysis (Right)</u> Element Size: 1.0089 square inches Element Type: Quad/Tri

Sprint Configuration Power Transfer Unit

Endurance Configuration Power Transfer Unit

Future Plans

- Manufacturing
 - Motor Mounting Components
 - Sprint and Endurance Misdescriptions
- Testing
 - Integrated Designs
 - System Efficiency and Reliability

Project Management

2021 Expected Budget

Budget Details

- Original Estimated Budget: \$5,450
 - Travel & Registration Fee: \$4,750
 - Project: \$700

- Current Estimated Budget: \$6,938.72
 - Travel & Registration Fee: \$6,045.03
 - Project: \$893.69

 \equiv

TCNJ SolarSplash

HOME

VIDEOS

PLAYLISTS 0

CHANNELS

DISCUSSION

Q

ABOUT

Uploads

Solar Splash Team Time-lapse 2 views • 1 week ago

A timelapse of our time in the lab measuring and testing existing components.

The College of New Jersey Solar Splash 2021

TCNJ SOLAR SPLASH 2021

tcnjsolarsplash Edit Profile 🗘

2 posts 38 followers 68 following

TCNJ Solar Splash The College of New Jersey Solar Splash Competiton Team tcnjss21.weebly.com

WHAT IS THE SOLAR SPLASH COMPETITION?

SOLAR SPLASH® is the World Championship of Collegiate Solar Boating and the competition takes place over

GANTT Chart

			% OF TASK	J	UNE	JU	LY	AUGUS	Т	SEPTEMBE	R OCTO	DBER	NOVEMI	BER	CEMBE		ANUAR	FEE	RUARY	MA	ARCH		PRIL	м	AY	BOW	JUNE
	TASK TITLE	Member	COMPLETE	1 2	3 4	1 2	3 4	1 2 3	4	1 2 3 4	4 1 2	3 4	1 2 3	4	2 3	4 1	2 3	4 1	2 3 4	1 2	3	4 1 2	34	1 2	3 4	1	2 3
1	Team Responsibilties																										
1.1	Preliminary Research	т	100%																								
1.2	Project Proposal	т	100%																								
1.3	Register for Competition	т	90%											100													Ť
1.4	Budget	E	90%																								
1.5	Schedule	Т	70%																								
1.6	Critical Path Network	Т	100%																								
1.7	Preliminary Design Review	Т	100%																								
1.8	Truck Rental	L	20%																								
1.9	SP1 Presentation	Т	80%											110													
1.1	SP2 Presentation	Т	0%																								
2	Preliminary Testing																										
2.1	Measure waterline and COG/COF	L	100%																								
2.2	Weigh and measure all boat components	L	100%																								
2.3	Testing Telemetry Equipment	E	50%																								
2.4	Lake Testing	Т	100%																								
3	Design																										
3.1	Weight Distribution	L	100%							the second																	
3.3	Steering	L	60%													_											
3.4	Electrical	D	98%																								
3.5	Telemetry	E	94%								_																
3.5.1	Schematic	E	100%																								
3.5.2	GPS	E	100%													_											
3.5.3	IMU	E	90%																								
3-5-4	Current	E	100%																								
3-5-5	Voltage	E	100%																								
3.5.6	RPM	E	100%							_		_															
3.5.7	LabView	E	100%																_								
3.5.8	Communication Channel	E	100%												_												
3-5-9	Performance Review Program	E	60%													_			_			_					
3.6	Motor Mount	С	40%						_												0.1			-			
3.7	Drivetrain	С	35%							an an an						_			_			_				4	
4	Manufacturing						_	_		_											1					44	
4.1	Relocation of Skipper and Dash Modifications	L	0%							-																44	
4.2	Foam cut outs for motors	L	0%												_	- 5					0.1			-			
4.3	Endurance sleeve	С	0%							-					_				_			_				4	
4.4	Motor Mount	С	0%					_					1						-					-	-		
4.5	Electrical	D	25%	-				_			_					_									-	44	
4.6	Steering	L	0%		_		-			_																44	
4.7	Telemetry Installation	E	1%				-	_			-			-	_	_	_			_							
4.7.1	Rewire and Relabel	E&D	0%				50 0												1000			_				-	-
4.7.2	Hall Effect Sensors	E	0%				-			-					_	_						_				+	
4.7.3	Assemble IMU Housing	E	0%0				<u>e u 1</u>	_		2 8 8			<u> </u>			-	-	_	1 1			-				++	
4.7.4	Program LabVIEW	F	c%																							H	
4.7.6	Program MATI AR	E	0%																								
4.7.0	Integration and Testing	-	0.0																								
5.1	Telemetric Integration	E	0%													-											
5.2	Skipper Practice	т	0%																							1	
5.2	Endurance Practice	T	0%													-					1						
5.6	Sprint Practice	Т	0%																		1					t	-
6	Competition						Ic	01	0	he	to					-											+
6.1	Packing	Т	0%			V	VQ	al	q	116	10																-
6.2	Travel	Т	0%													-											
6.3	Competition	Т	0%																								
0.5	b																									4	

Solar Splash 2020-2021

Thank you Dr. Asper, Dr. Yan, Regina Cadillac, and the TCNJ School of Engineering

Questions?

Lauren DeSimone Weight Distribution and Steering

> Daniel Johnson Electrical System

Eliza Sweet Telemetry System

Christopher Taylor Power Transmission System

